Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Diagnostics (Basel) ; 13(2)2023 Jan 06.
Article in English | MEDLINE | ID: covidwho-2309023

ABSTRACT

Due to its widespread availability, low cost, feasibility at the patient's bedside and accessibility even in low-resource settings, chest X-ray is one of the most requested examinations in radiology departments. Whilst it provides essential information on thoracic pathology, it can be difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diagnostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropriateness of the therapy. This review article aims to provide an overview of the applications of AI for chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax, pneumonia, heart failure, and pleural effusion.

2.
J Pers Med ; 11(6)2021 Jun 03.
Article in English | MEDLINE | ID: covidwho-1259528

ABSTRACT

Pulmonary parenchymal and vascular damage are frequently reported in COVID-19 patients and can be assessed with unenhanced chest computed tomography (CT), widely used as a triaging exam. Integrating clinical data, chest CT features, and CT-derived vascular metrics, we aimed to build a predictive model of in-hospital mortality using univariate analysis (Mann-Whitney U test) and machine learning models (support vectors machines (SVM) and multilayer perceptrons (MLP)). Patients with RT-PCR-confirmed SARS-CoV-2 infection and unenhanced chest CT performed on emergency department admission were included after retrieving their outcome (discharge or death), with an 85/15% training/test dataset split. Out of 897 patients, the 229 (26%) patients who died during hospitalization had higher median pulmonary artery diameter (29.0 mm) than patients who survived (27.0 mm, p < 0.001) and higher median ascending aortic diameter (36.6 mm versus 34.0 mm, p < 0.001). SVM and MLP best models considered the same ten input features, yielding a 0.747 (precision 0.522, recall 0.800) and 0.844 (precision 0.680, recall 0.567) area under the curve, respectively. In this model integrating clinical and radiological data, pulmonary artery diameter was the third most important predictor after age and parenchymal involvement extent, contributing to reliable in-hospital mortality prediction, highlighting the value of vascular metrics in improving patient stratification.

3.
Radiology ; 300(2): E328-E336, 2021 08.
Article in English | MEDLINE | ID: covidwho-1136121

ABSTRACT

Background Lower muscle mass is a known predictor of unfavorable outcomes, but its prognostic impact on patients with COVID-19 is unknown. Purpose To investigate the contribution of CT-derived muscle status in predicting clinical outcomes in patients with COVID-19. Materials and Methods Clinical or laboratory data and outcomes (intensive care unit [ICU] admission and death) were retrospectively retrieved for patients with reverse transcriptase polymerase chain reaction-confirmed SARS-CoV-2 infection, who underwent chest CT on admission in four hospitals in Northern Italy from February 21 to April 30, 2020. The extent and type of pulmonary involvement, mediastinal lymphadenopathy, and pleural effusion were assessed. Cross-sectional areas and attenuation by paravertebral muscles were measured on axial CT images at the T5 and T12 vertebral level. Multivariable linear and binary logistic regression, including calculation of odds ratios (ORs) with 95% CIs, were used to build four models to predict ICU admission and death, which were tested and compared by using receiver operating characteristic curve analysis. Results A total of 552 patients (364 men and 188 women; median age, 65 years [interquartile range, 54-75 years]) were included. In a CT-based model, lower-than-median T5 paravertebral muscle areas showed the highest ORs for ICU admission (OR, 4.8; 95% CI: 2.7, 8.5; P < .001) and death (OR, 2.3; 95% CI: 1.0, 2.9; P = .03). When clinical variables were included in the model, lower-than-median T5 paravertebral muscle areas still showed the highest ORs for both ICU admission (OR, 4.3; 95%: CI: 2.5, 7.7; P < .001) and death (OR, 2.3; 95% CI: 1.3, 3.7; P = .001). At receiver operating characteristic analysis, the CT-based model and the model including clinical variables showed the same area under the receiver operating characteristic curve (AUC) for ICU admission prediction (AUC, 0.83; P = .38) and were not different in terms of predicting death (AUC, 0.86 vs AUC, 0.87, respectively; P = .28). Conclusion In hospitalized patients with COVID-19, lower muscle mass on CT images was independently associated with intensive care unit admission and in-hospital mortality. © RSNA, 2021 Online supplemental material is available for this article.


Subject(s)
COVID-19/complications , Radiography, Thoracic/methods , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2
4.
Eur Radiol Exp ; 4(1): 68, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-977692

ABSTRACT

BACKGROUND: Integration of imaging and clinical parameters could improve the stratification of COVID-19 patients on emergency department (ED) admission. We aimed to assess the extent of COVID-19 pulmonary abnormalities on chest x-ray (CXR) using a semiquantitative severity score, correlating it with clinical data and testing its interobserver agreement. METHODS: From February 22 to April 8, 2020, 926 consecutive patients referring to ED of two institutions in Northern Italy for suspected SARS-CoV-2 infection were reviewed. Patients with reverse transcriptase-polymerase chain reaction positive for SARS-CoV-2 and CXR images on ED admission were included (295 patients, median age 69 years, 199 males). Five readers independently and blindly reviewed all CXRs, rating pulmonary parenchymal involvement using a 0-3 semiquantitative score in 1-point increments on 6 lung zones (range 0-18). Interobserver agreement was assessed with weighted Cohen's κ, correlations between median CXR score and clinical data with Spearman's ρ, and the Mann-Whitney U test. RESULTS: Median score showed negative correlation with SpO2 (ρ = -0.242, p < 0.001), positive correlation with white cell count (ρ = 0.277, p < 0.001), lactate dehydrogenase (ρ = 0.308, p < 0.001), and C-reactive protein (ρ = 0.367, p < 0.001), being significantly higher in subsequently dead patients (p = 0.003). Considering overall scores, readers' pairings yielded moderate (κ = 0.449, p < 0.001) to almost perfect interobserver agreement (κ = 0.872, p < 0.001), with better interobserver agreement between readers of centre 2 (up to κ = 0.872, p < 0.001) than centre 1 (κ = 0.764, p < 0.001). CONCLUSIONS: Proposed CXR pulmonary severity score in COVID-19 showed moderate to almost perfect interobserver agreement and significant but weak correlations with clinical parameters, potentially furthering CXR integration in patients' stratification.


Subject(s)
COVID-19/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/methods , Aged , Emergency Service, Hospital , Female , Humans , Italy , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Severity of Illness Index
5.
Obes Res Clin Pract ; 15(1): 89-92, 2021.
Article in English | MEDLINE | ID: covidwho-970655

ABSTRACT

We retrospectively investigated, in 62 consecutive hospitalised COVID-19 patients (aged 70 ± 14 years, 40 males), the prognostic value of CT-derived subcutaneous adipose tissue and visceral adipose tissue (VAT) metrics, testing them in four predictive models for admission to intensive care unit (ICU), with and without pre-existing comorbidities. Multivariate logistic regression identified VAT score as the best ICU admission predictor (odds ratios 4.307-12.842). A non-relevant contribution of comorbidities at receiver operating characteristic analysis (area under the curve 0.821 for the CT-based model, 0.834 for the one including comorbidities) highlights the potential one-stop-shop prognostic role of CT-derived lung and adipose tissue metrics.


Subject(s)
COVID-19 , Critical Care , Hospitalization , Intensive Care Units , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Subcutaneous Fat/metabolism , Adult , Aged , Aged, 80 and over , Area Under Curve , Body Mass Index , COVID-19/complications , COVID-19/metabolism , Female , Humans , Logistic Models , Male , Middle Aged , Obesity/complications , Obesity/epidemiology , Pandemics , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed
6.
Eur J Radiol ; 132: 109272, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753629

ABSTRACT

PURPOSE: To report real-world diagnostic performance of chest x-ray (CXR) readings during the COVID-19 pandemic. METHODS: In this retrospective observational study we enrolled all patients presenting to the emergency department of a Milan-based university hospital from February 24th to April 8th 2020 who underwent nasopharyngeal swab for reverse transcriptase-polymerase chain reaction (RT-PCR) and anteroposterior bedside CXR within 12 h. A composite reference standard combining RT-PCR results with phone-call-based anamnesis was obtained. Radiologists were grouped by CXR reading experience (Group-1, >10 years; Group-2, <10 years), diagnostic performance indexes were calculated for each radiologist and for the two groups. RESULTS: Group-1 read 435 CXRs (77.0 % disease prevalence): sensitivity was 89.0 %, specificity 66.0 %, accuracy 83.7 %. Group-2 read 100 CXRs (73.0 % prevalence): sensitivity was 89.0 %, specificity 40.7 %, accuracy 76.0 %. During the first half of the outbreak (195 CXRs, 66.7 % disease prevalence), overall sensitivity was 80.8 %, specificity 67.7 %, accuracy 76.4 %, Group-1 sensitivity being similar to Group-2 (80.6 % versus 81.5 %, respectively) but higher specificity (74.0 % versus 46.7 %) and accuracy (78.4 % versus 69.0 %). During the second half (340 CXRs, 81.8 % prevalence), overall sensitivity increased to 92.8 %, specificity dropped to 53.2 %, accuracy increased to 85.6 %, this pattern mirrored in both groups, with decreased specificity (Group-1, 58.0 %; Group-2, 33.3 %) but increased sensitivity (92.7 % and 93.5 %) and accuracy (86.5 % and 81.0 %, respectively). CONCLUSIONS: Real-world CXR diagnostic performance during the COVID-19 pandemic showed overall high sensitivity with higher specificity for more experienced radiologists. The increase in accuracy over time strengthens CXR role as a first line examination in suspected COVID-19 patients.


Subject(s)
Clinical Competence/statistics & numerical data , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Radiography, Thoracic/methods , Betacoronavirus , COVID-19 , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Radiography, Thoracic/standards , Radiologists/standards , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL